Stereo Vision Implementation

- **Image Acquisition: Cameras**
 - OV3620: 8 megapixel
 - OV7710: Automotive, 320 x 240, 1/4" sensor
- **Camera Housing**
 - Mounted in Solidworks
 - SLA Rapid Prototyping
 - High Flex ABS-like plastic
- **PIC – 18F2550**
 - Used for SCCB
 - E2G Microcontroller
 - C-Compiler
 - Price: $5
- **Xilinx Spartan III FPGA**
 - Up to 1.6M system gates
 - From 56 to 734 I/Os
 - Embedded 18x18 Multipliers
 - Xilinx Spartan III: $12 million gates
 - Optimized for low cost consumer applications
- **Software**
 - C++ Dll captures data from FPGA
 - Gets most recent complete data set
 - Delivers left camera image, disparity image
 - Python script displays, stores data
 - Images update as fast as PC allows
 - Can store images on host PC
 - Time stamping

System Pricing

- **Current Platform**
 - Quick USB, ~$150
 - Camera development kit, ~$200 ea.
 - New horizons FPGA board, ~$450
 - Cables, proto-boards, etc. ~$100

- **Large Quantity**
 - Cameras: $15 (Qty 10K)
 - FPAGAs: $50 (Lq. Qty)
 - USB Cypress Chip: $8 (Qty 1K)

Similar Products

- Videro Stereo on a Chip
 - 30 fps @ 640x480, ~$1,400
- Point Grey Bumblebee
 - 30 fps @ 640 x 480, ~$1,995
- Tyx Deep Sea
 - 30 fps @ 512 x 480, ~$10,000

Timeline, Next Steps

- Explored existing stereovision options
- Identified and tested algorithms
- Programmed algorithm on FPGA
- Obtained, interpreted, and provided camera data through USB
- Refinement of algorithm
- Calculate distance from disparity
- Optics optimization (lens, registration)
- Technology demonstration
- Integration of multiple camera pairs
- Technology transfer